Synthesis of a Silylamino-substituted Phosphorane

By Alan H. Cowley* and Rosalind Chung-Yi Lee

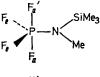
(Department of Chemistry, University of Texas at Austin, Austin, Texas 78712)

Summary The synthesis of $Me_3Si(Me)NPF_4$, the first silylamino-substituted phosphorane, is described; variable temperature ^{19}F n.m.r. data indicate that the

molecule is fluxional, with the silylamino group occupying an equatorial site of a trigonal bipyramid in the ground state. THE growing interest in Si-N-P compounds relates to questions of bonding and stereochemistry as well as to their potential utility in chemical synthesis. To date two-,1 three-,²⁻⁴ and four-^{3,5} co-ordinate phosphorus compounds featuring the Si-N-P linkage have been reported. However, five-co-ordinate species have eluded isolation owing to the ready elimination of silvl halides. We now report the first synthesis of such a compound.

An equimolar mixture of Me₃SiN(Me)PF₂^{2b,6} and SF₄ was allowed to warm from -196 to -78 °C and was maintained at this temperature for 2 days. Fractionation of the volatile material afforded a ca. 20% yield of Me₃SiN(Me)PF₄ (1), in a trap maintained at -45 °C. Compound (1) is a colourless liquid which decomposes above 0 °C to yield Me₃SiF and (MeNPF₃)₂;⁷ its characterisation was based, therefore, upon mass spectrometric and n.m.r. data.

The mass spectrum of (1) consisted of a low-intensity parent peak at m/e 209, and anticipated fragmentation peaks at m/e 194 [Me₂SiN(Me)PF₄⁺], 164 [SiN(Me)PF₄⁺], and 107 $[PF_4^+]$.


At 0 °C the ¹H n.m.r. spectrum of (1) comprised an N-methyl doublet of quintets at τ 7.29, with J_{PNCH} 18.5, and J_{FPNCH} 2.0 Hz, and an Me₃Si singlet at τ 9.76. The relative areas of the N-Me and Me₃Si resonances were 1:3, respectively. At 0 °C the ¹⁹F n.m.r. spectrum (94.2 MHz; CHFCl₂ solution; CCl₃F reference) of (1) consisted of a doublet at 59.2 p.p.m. with $J_{\rm PF}$ 862 Hz. Upon cooling a coalescence was observed at -90 °C, followed by the emergence of six triplets (each with poorly resolved quartet fine splitting) in a 1:1:1:1:2:2 intensity ratio at -120 °C.

The following assignments were made by comparison with ¹⁹F n.m.r. data for other tetrafluorophosphoranes:⁸

 $\delta(\mathbf{F}_{e})$ 71.6 p.p.m., $J(\mathbf{PF}_{e})$ 942.6 Hz, $J(\mathbf{F}_{a}\mathbf{PF}_{e})$ 69.2 Hz; $\delta(F_a)$ 56.6 p.p.m., $J(PF_a)$ 816.7 Hz, $J(F_ePF_a)$ 74.6 Hz;

 $\delta(F_{a'})$ 38.9 p.p.m., $J(PF_{a'})$ 746.7 Hz, $J(F_{e}PF_{a'})$ 64.4 Hz.

Collectively these data establish for (1) the trigonal bipyramidal ground-state geometry shown.

(1)

However, the present data do not permit unequivocal assignments for the F_a and F_a' resonances. A priori one can consider three stereochemical processes for (1), viz., pyramidal nitrogen inversion, N-P rotation, and fluorine positional interchange. However, careful scrutiny of the ¹⁹F dynamic n.m.r. spectra reveals that no distinction can be made between these processes. The experimental free energy of activation is estimated to be $7.4 \text{ kcal mol}^{-1}$.

A final noteworthy feature is the fact that the reaction of $Me_3SiN(Me)PF_2$ with SF_4 proceeds via oxidative fluorination rather than Si-N cleavage.

We thank the National Science Foundation and the Robert A. Welch Foundation for financial support.

(Received, 4th November 1976; Com. 1224.)

¹ E. Niecke and W. Flick, Angew. Chem. Internat. Edn., 1973, 12, 585; O. J. Scherer and N. Kuhn, ibid., 1974, 13, 811

² (a) R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, J. Amer. Chem. Soc., 1975, 97, 5302; (b) R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, Inorg. Chem., in the press.

³ R. Keat, J. Chem. Soc. (A), 1970, 1795.

⁴ E. Niecke and W. Flick, Angew. Chem. Internat. Edn., 1974, 13, 134.

⁵ H. Schmidbaur, Adv. Organometallic Chem., 1970, 9, 259, and references cited therein; E. Niecke and W. Bitter, Chem. Ber., 1976, 109, 415.

⁶ J. S. Harman, M. E. McCartney, and D. W. A. Sharp, J. Chem. Soc. (A), 1971, 1547; R. Jefferson, J. F. Nixon, T. M. Painter,

R. Keat, and L. Stobbs, J.C.S. Dalton, 1973, 1414. ⁷ R. K. Harris and C. M. Woodman, Mol. Phys., 1966, 10, 437; G. C. Demitras and A. G. MacDiarmid, Inorg. Chem., 1967, 6, 1903; ¹⁰⁶⁷ 628

 M. P. Yagupsky, *Inorg. Chem.*, 1967, 6, 1770; A. J. Downs, *Chem. Comm.*, 1967, 628.
⁸ For extensive compilations of n.m.r. data see R. Luckenbach, 'Dynamic Stereochemistry of Pentacoordinated Phosphorus and Related Elements,' Georg Thieme, Stuttgart, 1973; D. Hellwinkel, 'Organo Phosphorus Compounds,' Vol. 3, eds. G. M. Kosolapoff and L. Maier, Wiley-Interscience, New York, 1972, p. 185; R. Schmutzler, 'Halogen Chemistry,' Vol. 2, ed V. Gutmann, Academic Press, London and New York, p. 31.